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Abstract  

The objective of this paper is to analyze the effect of radiative heat and mass transfer on unsteady natural convection 
couette flow of a viscous incompressible fluid in the slip flow regime in presence of variable suction and radiative 
heat source. The governing equations of the flow field are solved employing perturbation technique and the 
expressions for the velocity, temperature, concentration distribution, skin friction and the rate of heat transfer i.e. the 
heat flux in terms of Nusselts number Nu are obtained. The effects of the pertinent parameters such as suction 

parameters 1, 2 ; Grashof number for heat and mass transfer Gr, Gc; slip flow parameters h1, h2; radiation 
parameter F, permeability parameter Kp, Schmidt number Sc, Prandtl number Pr, etc. on the flow field have been 
studied and the results are presented graphically and discussed quantitatively. Copyright © IJRETR, all right 
reserved. 
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Introduction 

In recent years the effect of radiation on flow problems with heat transfer has been given much importance in 
different fields of engineering and technology. Many engineering processes occur at high temperatures and the 
knowledge of radiation heat transfer has become very important for the design of pertinent equipments such as 
nuclear power plants, gas turbines and various propulsion devices for aircrafts, missiles, satellites and space 
vehicles. At high operating temperature, radiation effect is very significant. In view of the above interests a series of 
investigations have been made by different scholars.  
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Govindarajulu [1] discussed hydromagnetic couette flow with time-dependent suction. Sattar and Alam [2] analyzed 
thermal diffusion as well as transpiration effect on MHD free convection and mass transfer flow past an accelerated 
vertical porous plate. Sattar and Kalim [3] studied the unsteady free convection interaction with thermal radiation in 
a boundary layer flow past a vertical porous plate. Attia and Kotb [4] reported MHD flow between two parallel 
plates with heat transfer. Raptis and Perdikis [5] discussed radiation and free convection flow past a moving plate. 
Nagaraju et al. [6] investigated simultaneous radiative and convective heat transfer in a variable porosity medium. 
Sreekanth et al. [7] described transient MHD free convention flow of an incompressible viscous dissipative fluid. 
Chamkha [8] analyzed MHD flow of a uniformly stretched vertical permeable surface in presence of heat generation 
/absorption and chemical reaction.  

Cookey et al. [9] discussed the influence of viscous dissipation and radiation on unsteady MHD free convection 
flow past an infinite heated vertical plate in a porous medium with time dependent suction. Gokhale and Alsamman 
[10] estimated the effects of mass transfer on the transient free convection flow of a dissipative fluid along a semi-infinite 
vertical plate with constant heat flux.  Singh and Gupta [11] investigated the MHD free convective flow of viscous 
fluid through a porous medium bounded by an oscillating porous plate in the slip flow regime with mass transfer. 
Das and his associates [12] estimated numerically the mass transfer effects on unsteady flow past an accelerated 
vertical porous plate with suction. Ibrahim et al. [13] analyzed the effect of chemical reaction and radiation 
absorption on the unsteady MHD free convection flow past a semi-infinite vertical permeable moving plate with 
heat source and suction. Das [14] investigated the effect of suction and injection on MHD three dimensional couette 
flow and heat transfer through a porous medium. Das and his co-workers [15] discussed the hydromagnetic 
convective flow past a vertical porous plate through a porous medium with suction and heat source.  

The objective of this paper is to analyze the effect of radiative heat and mass transfer on unsteady natural convection 
couette flow of a viscous incompressible fluid in the slip flow regime in presence of variable suction and radiative 
heat source. The governing equations of the flow field are solved for the velocity, temperature, concentration 
distribution, skin friction and the rate of heat transfer and the effects of the various flow parameters on the flow field 
have been studied and the results are presented graphically and discussed quantitatively.  

2. Formulation of the problem 

We consider a two dimensional unsteady free convective flow of a viscous incompressible fluid between two 
vertical parallel porous plates placed at a distance h apart in the slip flow regime in presence of variable suction and 
radiative heat source.  Let the medium between the plates be filed with a porous material of permeability  

                                                                     t
0 Be1KtK   ,                                                                  (1)  

and a time dependent suction 

                                                                     tAevtv  10                                                                         (2) 

be applied at the plate y=0 and the same injection velocity be applied at the pate y=1. We choose x-axis along the 
plate and y-axis normal to it. Under the above conditions the equations governing the flow are:  
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Energy equation: 
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Concentration equation: 
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The boundary conditions of the problem are: 
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where 
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
 , L being the mean free path and �1, the Maxwell’s reflection coefficient.  

The radiative heat flux qr is given by 
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where  
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w , wk is the absorption coefficient at the wall, be  is Planck’s function and λ is the 

frequency, u   is the velocity, T   is the temperature, C  is the concentration,  is the volumetric coefficient of 

expansion for heat transfer,  * is the volumetric coefficient of expansion for mass transfer, k is the thermal 

conductivity,  is the kinematic viscosity, Cp is the specific heat at constant pressure, D is the molecular diffusivity, 

g is the acceleration due to gravity, A and B are the real positive constants, t is the time and  is a small positive 

number such that A1 and B1. 

Introducing the following non-dimensional variables and parameters, 
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in Equations (3)-(5), we get the following non-dimensional equations 
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where Gr and Gc respectively are the Grashof number for heat and mass transfer, Kp is the permeability parameter, Pr 

is the Prandtl number, F is the radiation parameter, Sc is the Schmidt number, �� and are the suction parameters 
and h1 and h2 are the slip flow parameters. 

The corresponding boundary conditions now reduce to:  
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3. Method of Solution 

 We now wish to seek the solutions for Equations (9)-(11) under boundary condition (12) for a particular case R=1, 
which is valid for an incompressible fluid. In order to solve Equations (9)-(11), we assume 

 u (y, t) = u0 (y) + u1 (y) e-t + O (2),                                                                                                                        (13)  

 (y, t) = 0 (y) + 1 (y) e-t + O (2),                                                                                                                         (14) 

C(y, t) = C0 (y) +  C1 (y) e-t + O (2).                                                                                                                       (15) 

Using Equations (13)-(15) in Equations (9)-(11), we get the following zeroth order and first order equations: 
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First order: 
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The corresponding boundary conditions are     
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The solutions of Equations (16)-(21) under boundary condition (22) are given by 
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The wall shear stress i.e. the skin friction at the wall is given by 
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Using Equation (23) in Equation (26), it is given by 
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The rate of heat transfer i.e. the heat flux at the wall is given by 
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Using Equation (24) in Equation (28), it is given by 
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4. Discussions and Results 
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This paper discusses the effect of variable suction and mass transfer on unsteady free convective couette flow of a 
viscous incompressible fluid in the slip flow regime in presence of variable suction and radiative heat source. The 
governing equations of the flow field are solved for the velocity, temperature, concentration distribution, skin 
friction and the rate of heat transfer and the effects of the various flow parameters on the flow field have been 
studied and the results are presented graphically and discussed quantitatively with the aid of velocity profiles 1-9, 
temperature profiles 10-11 and concentration distribution shown in Figure 12.  

4.1. Velocity field 

The velocity of the flow field varies to a great extent with the variation of the flow parameters. The main factors 

affecting the velocity of the flow field are suction parameters 1, 2, Grashof number for heat and mass transfer Gr, 
Gc; slip flow parameters h1, h2, radiation parameter F, permeability parameter Kp and Schmidt number Sc. The 
effects of these parameters on the velocity of the flow field are analyzed in Figures 1-9.  

    

 

Figure 1: Velocity profiles against y for different values of �� with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Sc=0.6, Kp=1, F=0.1, A=0.5, B=0.5, h1=0.1, h2=0.1 and 2=0.2 

 

Figures 1 and 2 discuss the effect of suction parameters 1 and 2 respectively on the flow field. Analyzing the 
curves of both the figures, it is observed that both the parameters have accelerating effect on the velocity of the flow 
field at all points. Figures 3 and 4 respectively depict the effect of Grashof number for heat transfer Gr and mass 
transfer Gc on the flow field. The Grashof number for heat transfer is found to retard the velocity of the flow field at 
all points. The effect of a growing Grashof number for mass transfer is to accelerate the magnitude of velocity of the 
flow field at all points. The effects of slip flow parameters h1, h2; on the velocity of the flow field are shown in 
Figures 5 and 6 respectively. Comparing the curves of both the figures, it is observed that both the parameters 
enhance the velocity of the flow field at all points in a different manner. The parameter h1 tends to converge the 
velocity profiles at a point and there after the effect reverses while the parameter h2 tends to diverge the velocity 
profiles from a point. 
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Figure 7 shows the effect of radiation parameter F on the flow field. A growing radiation parameter is found to 
accelerate the velocity of the flow field at all points. In Figure 8, we present the effect of permeability parameter Kp 

on the velocity field .The effect of increasing permeability parameter is to accelerate the velocity of the flow field at 
all points. Figure 9 elucidates the effect of Schmidt number Sc on the velocity field. The effect of growing Sc is to 
decrease the velocity at all points of the flow field. 

 

 

Figure 2: Velocity profiles against y for different values of �with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Sc=0.6, Kp=1, F=0.1, A=0.5, B=0.5, h1=0.1, h2=0.1 and 1=0.1 

 

 

0 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y

u

α2 =0

α2 =0.1

α2 =0.3

α2 =0.5

-1.2 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2

0.4

0.6

0.8

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
y

u

Gr =1

Gr =3

Gr =5

Gr =10



International Journal of Renewable Energy Technology Research                                                           
Vol. 1, No. 1, PP: 01 - 14, December 2012,   ISSN: 2325-3924 (Online)                                                                                  

Available online www.ijretr.org                                                                                                        
9

Figure 3: Velocity profiles against y for different values of Gr� with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Sc=0.6, 

Kp=1, F=0.1, A=0.5, B=0.5, h1=0.1, h2=0.1, 1=0.1 and 2=0.2 

 

 

Figure 4: Velocity profiles against y for different values of � Gc with Pr=0.71, =0.1, t=0.1, =0.02, Gr=2, Sc=0.6, 

Kp=1, F=0.1, A=0.5, B=0.5, h1=0.1, h2=0.1, 1=0.1 and 2=0.2 

 

 

 

Figure 5: Velocity profiles against y for different values of h�� with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Sc=0.6, Kp=1, F=0.1, A=0.5, B=0.5, h2=0.1, 1=0.1 and 2=0.2 
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Figure 6: Velocity profiles against y for different values of � h2 with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Sc=0.6, Kp=1, F=0.1, A=0.5, B=0.5, h1=0.1, 1=0.1 and 2=0.2 

 

 

Figure 7: Velocity profiles against y for different values of � F with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Sc=0.6, Kp=1, A=0.5, B=0.5, h1=0.1, h2=0.1, 1=0.1 and 2=0.2 
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Figure 8: Velocity profiles against y for different values of Kp�with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Sc=0.6, F=0.1, A=0.5, B=0.5, h1=0.1, h2=0.1, 1=0.1 and 2=0.2 

 

Figure 9: Velocity profiles against y for different values of Sc�with Pr=0.71, =0.1, t=0.1, =0.02, Gc= 2, Gr=2, 

Kp=1, F=0.1, A=0.5, B=0.5, h1=0.1, h2=0.1, 1=0.1 and 2=0.2 

4.2. Temperature field 

The temperature field suffers a major change in magnitude due to the variation of Prandtl number Pr and radiation 
parameter F. The effects of these parameters on the temperature field are discussed in Figures 10-11. Both the 
parameters retard the magnitude of temperature of the flow field at all points.  
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Figure 10: Temperature profiles against y for different values of � Pr with =0.1, t=0.1, =0.02, F=0.1 and A=0.5  

 

Figure 11: Temperature profiles against y for different values of F�with Pr=0.71, =0.1, t=0.1, =0.02 and A=0.5  

 4.3. Concentration distribution 

The presence of foreign mass in the flow field greatly affects the concentration boundary layer thickness of the flow 
field at all points. The factor responsible for this variation is Schmidt number Sc. In Fig.12, keeping other parameters 
of the flow field constant, the Schmidt number Sc is varied in steps and its effect on the concentration boundary layer 
of the flow field is studied. It is observed that a growing Schmidt number reduces the concentration boundary layer 
of the flow field at all points.  
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Figure 12: Concentration profiles against y for different values of Sc�with =0.1, t=0.1, =0.02 and A=0.5  

5. Conclusions 

We present below some of the important features of the flow field due to the variation of the flow parameters. 

1.    Both the suction parameters 1 and 2 are observed to have an accelerating effect on the velocity of  the flow  
  field at all points. 

2.    The Grashof number for heat transfer Gr is found to retard the velocity of the flow field at all points and the  
  effect of a growing Grashof number for mass transfer Gc is to accelerate the magnitude of velocity of the flow 
  field at all points. 

3.    The slip flow parameters h1 and h2 enhance the velocity of the flow field at all points in a different manner.  
  The parameter h1 tends to converge the velocity profiles at a point and there after the effect reverses while the 
  parameter h2 tends to diverge the velocity profiles from a point. 

4.    A growing radiation parameter F is found to accelerate the velocity of the flow field at all points. 

5.    The effect of increasing permeability parameter Kp is to accelerate the velocity of the flow field at all points. 

6.    The Prandtl number Pr and the radiation parameter F retard the magnitude of temperature of the flow field at 
 all points. 

7.    A growing Schmidt number reduces the concentration boundary layer thickness of the flow field at all points. 
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